Streamline Your Machine Learning Workflow with Docker: A Beginner’s Guide

docker containerizing

Docker has revolutionized the way applications are developed and deployed by making it easier to build, package, and distribute applications as self-contained units that can run consistently across different environments.

I’ve been using docker as a primary tool with my machine learning experiments for a while. If you interested in reading how sweet the docker + machine learning combo is; you can hop to my previous blog post here.

Docker is important in machine learning for several reasons:

  • Reproducibility: In machine learning, reproducibility is important to ensure that the results obtained in one environment can be replicated in another environment. Docker makes it easy to create a consistent, reproducible environment by packaging all the necessary software and dependencies in a container. This ensures that the code and dependencies used in development, testing, and deployment are the same, which reduces the chances of errors and improves the reliability of the model.
  • Portability: Docker containers are lightweight and can be easily moved between different environments, such as between a developer’s laptop and a production server. This makes it easier to deploy machine learning models in production, without worrying about differences in the underlying infrastructure.
  • Scalability: Docker containers can be easily scaled up or down to handle changes in the demand for machine learning services. This allows machine learning applications to handle large amounts of data and processing requirements without requiring a lot of infrastructure.
  • Collaboration: Docker makes it easy to share machine learning models and code with other researchers and developers. Docker images can be easily shared and used by others, which promotes collaboration and reduces the amount of time needed to set up a new development environment.

Overall, Docker simplifies the process of building, deploying, and managing machine learning applications, making it an important tool for data scientists and machine learning engineers.

Alright… Docker is important. How can we get started?

I’ll share the procedure I normally follow with my ML experiments. Then demonstrate the way we can containerize a simple ML experiment using docker. You can use that as a template for your ML workloads with some tweaks accordingly.

I use python as my main programming language and for deep learning experiments, I use PyTorch deep learning framework.  So that’s a lot of work with CUDA which I need to work a lot with configuring the correct environment for model development and training.

Since most of us use anaconda as the dev framework, you may have the experience with managing different virtual environments for different experiments with different package versions. Yes. That’s one option, but it is not that easy when we are dealing with GPUs and different hardware configurations.

In order to make my life easy with ML experiments, I always use docker and containerize my experiments. It’s clean and leave no unwanted platform conflicts on my development rig and even on my training cluster.

Yes! I use Ubuntu as my OS. I’m pretty sure you can do this on your Mac and also in the Windows PC (with bit of workarounds I guess)

All you need to get started is installing docker runtime in your workstation. Then start containerizing!

Here’s the steps I do follow:

  1. I always try to use the latest (but stable) package versions in my experiments.
  2. After making sure I know all the packages I’m going to use within the experiment, I start listing down those in the environment.yml file. (I use mamba as the package manager – which is similar to conda but bit faster than that)
  3. Keep all the package listing on the environment.yml file (this makes it lot easier to manage)
  4. Keep my data sources on the local (including those in the docker image itself makes it bulky and hard to manage)
  5. Configure my experiments to write its logs/ results to a local directory (In the shared template, that’s the results directory)
  6. Mount the data and results to the docker image. (it allows me to access the results and data even after killing the image)
  7. Use a bash script to build and run the docker container with the required arguments. (In my case I like to keep it as a .sh file in the experiment directory itself)    

In the example I’ve shared here, a simple MNIST classification experiment has been containerized and run on a GPU based environment.

Github repo : https://github.com/haritha91/mnist-docker-example

I used a ubuntu 20.04 base image from nvidia with CUDA 11.1 runtime. The package manager used here is mamba with python 3.8.    

FROM nvidia/cuda:11.1.1-base-ubuntu20.04

# Remove any third-party apt sources to avoid issues with expiring keys.
RUN rm -f /etc/apt/sources.list.d/*.list

# Setup timezone (for tzdata dependency install)
ENV TZ=Australia/Melbourne
RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime

# Install some basic utilities and dependencies.
RUN apt-get update && apt-get install -y \
    curl \
    ca-certificates \
    sudo \
    git \
    bzip2 \
    libx11-6 \
    libgl1 libsm6 libxext6 libglib2.0-0 \
 && rm -rf /var/lib/apt/lists/*

# Create a working directory.
RUN mkdir /app
WORKDIR /app

# Create a non-root user and switch to it.
RUN adduser --disabled-password --gecos '' --shell /bin/bash user \
 && chown -R user:user /app
RUN echo "user ALL=(ALL) NOPASSWD:ALL" > /etc/sudoers.d/90-user
USER user

# All users can use /home/user as their home directory.
ENV HOME=/home/user
RUN chmod 777 /home/user

# Create data directory
RUN sudo mkdir /app/data && sudo chown user:user /app/data

# Create results directory
RUN sudo mkdir /app/results && sudo chown user:user /app/results


# Install Mambaforge and Python 3.8.
ENV CONDA_AUTO_UPDATE_CONDA=false
ENV PATH=/home/user/mambaforge/bin:$PATH
RUN curl -sLo ~/mambaforge.sh https://github.com/conda-forge/miniforge/releases/download/4.9.2-7/Mambaforge-4.9.2-7-Linux-x86_64.sh \
 && chmod +x ~/mambaforge.sh \
 && ~/mambaforge.sh -b -p ~/mambaforge \
 && rm ~/mambaforge.sh \
 && mamba clean -ya

# Install project requirements.
COPY --chown=user:user environment.yml /app/environment.yml
RUN mamba env update -n base -f environment.yml \
 && mamba clean -ya

# Copy source code into the image
COPY --chown=user:user . /app

# Set the default command to python3.
CMD ["python3"]

In the beginning you may see this as an extra burden. Trust me, when your experiments get complex and you start working with different ML projects parallelly, docker is the lifesaver you have and it’s going to save you a lot of unnecessary time you waste on ground level configurations.

Happy coding!

MLOps : Let’s start plumbing ML experiments!

What’s all this hype on MLOps? What’s the difference between machine learning and MLOps? Is MLOps essential? Why we need MLOps? Through this article series we going to start a discussion on MLOps to get a good start with the upcoming trend. The first post is not going to go deep with technicalities, but going to cover up essential concepts behind MLOps.

What is MLOps?

As the name implies, it is obviously having some connection with DevOps. So, will see what DevOps is first.

“A compound of development (Dev) and operations (Ops), DevOps is the union of people, process, and technology to continually provide value to customers.”

Microsoft Docs

This is the formal definition of DevOps. In the simpler terms, DevOps is the approach of streamlining application development life cycle of software development process. It ensures the quality engineering and security of the product while making sure the team collaboration and coordination is managed effectively.

Imagine you are a junior level developer in a software development company who develops a mission critical system for a surveillance application. DevOps process make sure each and every code line you write is tracked, managed and integrated to the final product reliably. It doesn’t stop just by managing the code base. It involves managing all development life cycle steps including the final deployment and monitoring of the final product iteratively too.

That’s DevOps. Machine Learning Operations (MLOps) is influenced by DevOps principles and practices to increase the efficiency of machine learning workflows. Simply, it’s the way of managing ML workflows in a streamlines way to ensure quality, reliability, and interpretability of machine learning experiments.

Is MLOps essential?

We have been playing around with machine learning experiments with different tools, frameworks and techniques for a while. To be honest, most of our experiments didn’t end up in production environments :D. But, that’s the ultimate goal of predictive modeling.

Machine Learning experiment is an iterative process
Source : https://azure.microsoft.com/en-au/resources/gigaom-delivering-on-the-vision-of-mlops/

Building a machine learning model and deploying it is not a single step process. It starts with data collection and goes in an iterative life cycle till monitoring the deployed model in the production environment. MLOps approaches and concepts streamline these steps and interconnect them together.

Answer is Yes! We definitely need MLOps!

Why we need MLOps?

As I said earlier, MLOps interconnect the steps in ML life cycle and streamline the process.

I grabbed these points from Microsoft docs. As it implies, these are the goals of MLOps.

  • Faster experimentation and development of models

Good MLOps practices leads for more code and component reusability which leads for faster experiments and model development. For an example, without having separate training loops or data loading components for each experiment, we can reuse an abstract set of methods for those tasks and connect them with a machine learning pipeline for running different experiment configurations. That’s make the life easy of the developer a lot!

I do lot of experiments with computer vision. In my case, I usually have a set of abstract python methods that can be used for model training and model evaluation. When performing different experiments, I pass the required parameters to the pipeline and reuse the methods which makes the life easy with less coding hassle.    

  • Faster deployment of models into production

Machine learning model deployment is always a tricky part. Managing the endpoints and making sure the deployment environment is having all the required platform dependencies maybe hard to keep track with manual processes. A streamlines MLOps pipeline helps to manage deployments by enabling us to choose which trained model should go for production etc. by keeping track of a model registry and deployment slots.

  • Quality assurance and end-to-end lineage tracking

Maintaining good coding practices, version controlling, dataset versioning etc. ensures the quality of your experiments. Good MLOps practices helps you to find out the points where errors are occurring easily rather than breaking down the whole process. Will say your trained model is not performing well with the testing data after sometime from model deployment. That might be caused by data drift happened with time. Correctly configured MLOps pipeline can track such changes in the inference data periodically and make sure to notify such incidents.

  • Trustworthiness and ethical AI

This is one of the most important use cases of MLOps. It’s crucial to have transparency in machine learning experiments. The developer/ data scientist should be able to interpret each and every decision they took while performing the experiment. Since handling data is the key component of ML model, there should be ways to maintain correct security measures in experiments too. MLOps pipelines ensure these ethical AI principles are met by streamlining the process with a defined set of procedures.

How we gonna do this?

Now we all know MLOps is crucial. Not just having set of python scripts sitting in a notebook it’s all about interconnecting all the steps in a machine learning experiments together in an iterative process pipeline. There are many methods and approaches to go forward with. Some sits on-prem while most of the solutions are having hybrid approach with the cloud. I usually use lot of Azure services in my experiments and Azure machine learning Studio provides a one-stop workbench to handle all these MLOps workloads which comes pretty handy. Let’s start with a real-world scenario and see how we can use Azure Machine Learning Studio in MLOps process to streamline our machine learning experiments.